A formulation of Noether's theorem for fractional problems of the calculus of variations
Fractional (or non-integer) differentiation is an important concept both from theoretical and applicational points of view. The study of problems of the calculus of variations with fractional derivatives is a rather recent subject, the main result being the fractional necessary optimality condition...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
1000
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/4141 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/4141 |
Resumo: | Fractional (or non-integer) differentiation is an important concept both from theoretical and applicational points of view. The study of problems of the calculus of variations with fractional derivatives is a rather recent subject, the main result being the fractional necessary optimality condition of Euler-Lagrange obtained in 2002. Here we use the notion of Euler-Lagrange fractional extremal to prove a Noether-type theorem. For that we propose a generalization of the classical concept of conservation law, introducing an appropriate fractional operator. © 2007 Elsevier Inc. All rights reserved. |
---|