Summary: | This research work presents of study of ultra-wide band (UWB) indoor positioning considering different type of obstacles that can affect the localization accuracy. In the actual warehouse, a variety of obstacles including metal, board, worker and other obstacles will have NLOS (non-line-of-sight) impact on the positioning of the logistics package, which influence the measurement of the distance between the logistics package and the anchor , thereby affecting positioning accuracy. A new developed method attempts to improve the accuracy of UWB indoor positioning, through and improved positioning algorithm and filtering algorithm. In this project, simulate the warehouse environment in the laboratory, several simulation proves that the used Kalman filter algorithm and Markov algorithm can effectively reduce the error of NLOS. Experimental validation is carried out considering a mobile tag mounted on a robot platform.
|