Recomendação de música: comparação entre collaborative filtering e context filtering

A massificação de serviços de música online democratizou o acesso a milhões de músicas. No entanto, é impossível para os utilizadores ouvirem e conhecerem todas essas músicas. De modo a auxiliar na sugestão sobre o que ouvir num dado momento, foram desenvolvidos sistemas que recomendam músicas ao ut...

Full description

Bibliographic Details
Main Author: Canhoto, Vicente (author)
Format: masterThesis
Language:por
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/10071/8062
Country:Portugal
Oai:oai:repositorio.iscte-iul.pt:10071/8062
Description
Summary:A massificação de serviços de música online democratizou o acesso a milhões de músicas. No entanto, é impossível para os utilizadores ouvirem e conhecerem todas essas músicas. De modo a auxiliar na sugestão sobre o que ouvir num dado momento, foram desenvolvidos sistemas que recomendam músicas ao utilizador. A técnica de Collaborative Filtering gera recomendações com base nas músicas ouvidas por utilizadores com gostos semelhantes. Apesar de apresentar um bom desempenho, vários investigadores propuseram melhoramentos aos mesmos. Um dos mais referidos é a utilização de informação contextual sobre o utilizador. A relação entre a utilização desta informação em sistemas de recomendação e o aumento da satisfação dos utilizadores foi provada por diversos investigadores. O trabalho desenvolvido nesta dissertação focou-se na comparação entre um algoritmo de recomendação por Collaborative Filtering tradicional e outro baseado em determinados elementos do contexto. Para isso foi proposto e implementado um sistema de recomendação online que integra estas duas abordagens, apoiado numa revisão da literatura. Por fim, este sistema foi utilizado numa experiência de campo online em que qualquer utilizador pôde fazer pedidos de recomendação. Estes pedidos foram servidos alternadamente por cada um dos algoritmos de recomendação, e foram registadas as avaliações dos utilizadores às músicas recomendadas de modo a aferir a sua satisfação com ambas as abordagens. Os resultados obtidos demonstram que a recomendação baseada no contexto foi superior ao Collaborative Filtering, exceção apenas para a fase inicial do funcionamento do sistema em que existiam poucos dados acerca das interações dos utilizadores com as músicas disponibilizadas