CPT and Lorentz Violation in the Photon and Z-Boson Sector

Violation of CPT and Lorentz symmetry in the photon sector is described within the minimal Standard-Model Extension by a dimension-3 Chern-Simons-like operator parametrized by a four-vector parameter k(AF) that has been very tightly bounded by astrophysical observations. On the other hand, in the co...

Full description

Bibliographic Details
Main Author: Colladay, Donald (author)
Other Authors: Noordmans, Jacob (author), Potting, Robertus (author)
Format: article
Language:eng
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10400.1/11764
Country:Portugal
Oai:oai:sapientia.ualg.pt:10400.1/11764
Description
Summary:Violation of CPT and Lorentz symmetry in the photon sector is described within the minimal Standard-Model Extension by a dimension-3 Chern-Simons-like operator parametrized by a four-vector parameter k(AF) that has been very tightly bounded by astrophysical observations. On the other hand, in the context of the SU (2) x U (1) electroweak gauge sector of the Standard-Model Extension, CPT and Lorentz violation is described similarly, by dimension-3 operators parametrized by four-vector parameters k(1) and k(2). In this work, we investigate in detail the effects of the resulting CPT and Lorentz violation in the photon and Z-boson sectors upon electroweak-symmetry breaking. In particular, we show that, for the photon sector, the relevant Lorentz-violating effects are described at the lowest order by the kAF term, but that there are higher-order momentum-dependent effects due to photon-Z boson mixing. As bounds on CPT and Lorentz violation in the Z sector are relatively weak, these effects could be important phenomenologically. We investigate these effects in detail in this work.