Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives

In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator ${}^C\!\Delta_+^{(\alpha,\beta,\gamma)}:= {}^C\!D_{x_0^+}^{1+\alpha} +{}^C\!D_{y_0^+}^{1+\beta} +{}^C\!D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$ and the frac...

Full description

Bibliographic Details
Main Author: Ferreira, Milton (author)
Other Authors: Vieira, Nelson Felipe Loureiro (author)
Format: article
Language:eng
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10400.8/3811
Country:Portugal
Oai:oai:iconline.ipleiria.pt:10400.8/3811