Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator ${}^C\!\Delta_+^{(\alpha,\beta,\gamma)}:= {}^C\!D_{x_0^+}^{1+\alpha} +{}^C\!D_{y_0^+}^{1+\beta} +{}^C\!D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$ and the frac...
Main Author: | |
---|---|
Other Authors: | |
Format: | article |
Language: | eng |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10400.8/3811 |
Country: | Portugal |
Oai: | oai:iconline.ipleiria.pt:10400.8/3811 |