Structure of cationic surfactant micelles from molecular simulations of self-assembly

Molecular dynamics simulations of self-assembly of n-decyltrimethylammonium bromide surfactants were performed using an atomistic model, and a detailed analysis of the spontaneously formed micellar aggregates was carried out. This allowed for a detailed study of the structure of cationic surfactant...

ver descrição completa

Detalhes bibliográficos
Autor principal: Miguel Jorge (author)
Formato: article
Idioma:eng
Publicado em: 2010
Assuntos:
Texto completo:https://hdl.handle.net/10216/100186
País:Portugal
Oai:oai:repositorio-aberto.up.pt:10216/100186
Descrição
Resumo:Molecular dynamics simulations of self-assembly of n-decyltrimethylammonium bromide surfactants were performed using an atomistic model, and a detailed analysis of the spontaneously formed micellar aggregates was carried out. This allowed for a detailed study of the structure of cationic surfactant micelles free from any a priori assumptions regarding their size and shape. Atomic radial distribution functions, radial density profiles and bivariate water orientation distributions were computed. Together, they show the presence of a dry micelle core, with a hydrophobic environment similar to a liquid alkane, a well-defined head-group layer at the interface, and an outer layer of strongly bound bromide counterions. Water molecules penetrate the micelle as far as the innermost head site, adopting a sequence of orientations that is akin to that observed at planar interfaces with vapor or immiscible organic solvents. Water molecules at the exterior of the micelle are highly polarized by the electrical double-layer formed by cationic head-groups and bromide anions, orienting themselves with their dipole vector pointing towards the micelle core.