Characteristic functions and averages
Let $\Omega$ be a set and $\Omega_1,\ldots,\Omega_{m-1}$ subsets of $\Omega$, being $m$ an integer greater than one. For a given function $f=(f_1,\ldots f_m):\Omega\rightarrow\mathbb{R}^m$, we prove the existence of a unique function $\alpha=(\alpha_1,\ldots,\alpha_m):\Omega\rightarrow\mathbb{R}^m$...
Main Author: | |
---|---|
Format: | article |
Language: | eng |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/1822/13582 |
Country: | Portugal |
Oai: | oai:repositorium.sdum.uminho.pt:1822/13582 |