Application of radial basis function neural networks to a greenhouse inside air temperature model
The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | conferenceObject |
Idioma: | eng |
Publicado em: |
2013
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10400.1/2161 |
País: | Portugal |
Oai: | oai:sapientia.ualg.pt:10400.1/2161 |