Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2018
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/15637 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/15637 |