A stochastic fractional calculus with applications to variational principles
We introduce a stochastic fractional calculus. As an application, we present a stochastic fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic processes. A stochastic fractional Euler-Lagrange equation is obtained, extending those available in the...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2020
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/28984 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/28984 |
Resumo: | We introduce a stochastic fractional calculus. As an application, we present a stochastic fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic processes. A stochastic fractional Euler-Lagrange equation is obtained, extending those available in the literature for the classical, fractional, and stochastic calculus of variations. To illustrate our main theoretical result, we discuss two examples: one derived from quantum mechanics, the second validated by an adequate numerical simulation. |
---|