On the Drazin index of regular elements
It is known that the existence of the group inverse $a^\#$ of a ring element $a$ is equivalent to the invertibility of $a^2a^-+1-aa^-$, independently of the choice of the von Neumann inverse $a^-$ of $a$. In this paper, we relate the Drazin index of $a$ with the Drazin index of $a^2a^-+1-aa^-$. We g...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2009
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/1822/10534 |
País: | Portugal |
Oai: | oai:repositorium.sdum.uminho.pt:1822/10534 |