The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable

Let (®, ¯) ½ R denote the maximal interval of existence of solution for the initial-value problem ½ dx dt = f(t, x), f : E ! Rm,E is an open subset of Rm+1 x(t0) = x0, with (t0, x0) 2 E. We show that (®, ¯) is r.e. (recursively enumerable) open and the solution x(t) defined on (®, ¯) is computable,...

ver descrição completa

Detalhes bibliográficos
Autor principal: Graça, Daniel (author)
Outros Autores: Zhong, Ning (author), Buescu, Jorge (author)
Formato: conferenceObject
Idioma:eng
Publicado em: 2012
Texto completo:http://hdl.handle.net/10400.1/1006
País:Portugal
Oai:oai:sapientia.ualg.pt:10400.1/1006