An integer programming model for the minimum interval graph completion problem

The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem...

ver descrição completa

Detalhes bibliográficos
Autor principal: Lopes, Isabel Cristina (author)
Outros Autores: Carvalho, J. M. Valerio de (author)
Formato: conferenceObject
Idioma:eng
Publicado em: 2015
Assuntos:
Texto completo:http://hdl.handle.net/10400.22/5826
País:Portugal
Oai:oai:recipp.ipp.pt:10400.22/5826
Descrição
Resumo:The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.