A MAP approach to evidence accumulation clustering

The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of...

ver descrição completa

Detalhes bibliográficos
Autor principal: Lourenço, André Ribeiro (author)
Outros Autores: Bulo, Samuel Rota (author), Rebagliati, Nicola (author), Fred, Ana (author), Figueiredo, Mário (author), Pelillo, Marcello (author)
Formato: conferenceObject
Idioma:eng
Publicado em: 2016
Assuntos:
Texto completo:http://hdl.handle.net/10400.21/6104
País:Portugal
Oai:oai:repositorio.ipl.pt:10400.21/6104
Descrição
Resumo:The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.