A comparative study of data augmentation techniques for image classification: generative models vs. classical transformations

Advances in deep convolutional neural networks and efficient parallel processing are showing great promise when applied to image classification, object detection, image restoration and image segmentation. However, deep models require large amounts of annotated training data, which are not always acc...

ver descrição completa

Detalhes bibliográficos
Autor principal: Gonçalves, Guilherme Marques (author)
Formato: masterThesis
Idioma:eng
Publicado em: 2021
Assuntos:
Texto completo:http://hdl.handle.net/10773/30759
País:Portugal
Oai:oai:ria.ua.pt:10773/30759