Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM(10), PM(2.5) and ultrafine particles at 65 home environments

Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess...

ver descrição completa

Detalhes bibliográficos
Autor principal: Madureira, J (author)
Outros Autores: Slezakova, K (author), Costa, C (author), Pereira, MC (author), Teixeira, JP (author)
Formato: article
Idioma:eng
Publicado em: 2020
Assuntos:
Texto completo:https://hdl.handle.net/10216/143286
País:Portugal
Oai:oai:repositorio-aberto.up.pt:10216/143286
Descrição
Resumo:Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM10, PM2.5) and number (N20-1000) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM10, PM2.5, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM2.5 (mean = 53 μg m−3) exceeded limit of 25 μg m−3, for PM10 (mean = 57 μg m−3) 41% of homes demonstrated average levels higher than 50 μg m−3, thus indicating potential risks. Indoor PM10 was mostly (82–99%) composed of PM2.5, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 103 # cm−3) were higher than outdoors (mean = 10.0 × 103 # cm−3). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources.