String C-group representations of alternating groups
We prove that for any integer n ≥ 12, and for every r in the interval [3, . . . , Floor((n−1)/2)], the group A_n has a string C-group representation of rank r, and hence that the only alternating group whose set of such ranks is not an interval is A_11.
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2019
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/26845 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/26845 |