Transport and optimal control of vaccination dynamics for COVID-19

We develop a mathematical model for transferring the vaccine BNT162b2 based on the heat diffusion equation. Then, we apply optimal control theory to the proposed generalized SEIR model. We introduce vaccination for the susceptible population to control the spread of the COVID-19 epidemic. For this,...

ver descrição completa

Detalhes bibliográficos
Autor principal: Zaitri, Mohamed Abdelaziz (author)
Outros Autores: Bibi, Mohand Ouamer (author), Torres, Delfim F. M. (author)
Formato: bookPart
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/10773/34438
País:Portugal
Oai:oai:ria.ua.pt:10773/34438
Descrição
Resumo:We develop a mathematical model for transferring the vaccine BNT162b2 based on the heat diffusion equation. Then, we apply optimal control theory to the proposed generalized SEIR model. We introduce vaccination for the susceptible population to control the spread of the COVID-19 epidemic. For this, we use the Pontryagin minimum principle to find the necessary optimality conditions for the optimal control. The optimal control problem and the heat diffusion equation are solved numerically. Finally, several simulations are done to study and predict the spread of the COVID-19 epidemic in Italy. In particular, we compare the model in the presence and absence of vaccination.