Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
We prove Sobolev-type p((.)) -> q ((.))-theorems for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p (x) and a two-parametrical power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2018
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10400.1/11861 |
País: | Portugal |
Oai: | oai:sapientia.ualg.pt:10400.1/11861 |