Mixed impedance boundary value problems for the Laplace–Beltrami equation
This work is devoted to the analysis of the mixed impedance-Neumann-Dirichlet boundary value problem (MIND~BVP) for the Laplace-Beltrami equation on a compact smooth surface $\mathcal{C}$ with smooth boundary. We prove, using the Lax-Milgram Lemma, that this MIND BVP has a unique solution in the cla...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2020
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/29279 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/29279 |