Automatic Extraction and Filtering of OpenStreetMap Data to Generate Training Datasets for Land Use Land Cover Classification
This paper tests an automated methodology for generating training data from OpenStreetMap (OSM) to classify Sentinel-2 imagery into Land Use/Land Cover (LULC) classes. Di erent sets of training data were generated and used as inputs for the image classification. Firstly, OSM data was converted into...
Autor principal: | |
---|---|
Outros Autores: | , , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2020
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10316/101317 |
País: | Portugal |
Oai: | oai:estudogeral.sib.uc.pt:10316/101317 |