Redox-active cytotoxic diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes: Reduction behaviour and theoretical interpretation

Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully ch...

ver descrição completa

Detalhes bibliográficos
Autor principal: Shang, Xianmei M. (author)
Outros Autores: Alegria, Elisabete (author), Guedes Da Silva, M. Fátima C. (author), Kuznetsov, Maxim L. (author), Li, Qingshan S. (author), Pombeiro, Armando (author)
Formato: article
Idioma:eng
Publicado em: 2015
Assuntos:
Texto completo:http://hdl.handle.net/10400.21/5121
País:Portugal
Oai:oai:repositorio.ipl.pt:10400.21/5121
Descrição
Resumo:Two series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(Bu2Sn)-Bu-n{C5H9C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH center dot center dot center dot O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(Bu2Sn)-Bu-n(HL)(2)] [HL=C3H5C(O)NHO (1a), C6H11C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R2Sn(C5H9C(O)NHO)(2)] [R=Bu-n (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R = Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with Sn-O and Sn-C ruptures, whereas for the alkyl (R=Bu-n) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with Sn-O bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn-II species with the cis geometry, features that can be of biological significance.