On singular operators in vanishing generalized variable-exponent Morrey spaces and applications to Bergman-type spaces
We give a proof of the boundedness of the Bergman projection in generalized variable-exponent vanishing Morrey spaces over the unit disc and the upper half-plane. To this end, we prove the boundedness of the Calderon-Zygmund operators on generalized variable-exponent vanishing Morrey spaces. We give...
Main Author: | |
---|---|
Other Authors: | , |
Format: | article |
Language: | eng |
Published: |
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/10400.1/14183 |
Country: | Portugal |
Oai: | oai:sapientia.ualg.pt:10400.1/14183 |
Summary: | We give a proof of the boundedness of the Bergman projection in generalized variable-exponent vanishing Morrey spaces over the unit disc and the upper half-plane. To this end, we prove the boundedness of the Calderon-Zygmund operators on generalized variable-exponent vanishing Morrey spaces. We give the proof of the latter in the general context of real functions on R-n, since it is new in such a setting and is of independent interest. We also study the approximation by mollified dilations and estimate the growth of functions near the boundary. |
---|