Well-Posedness of the Generalized Korteweg-de Vries-Burgers Equation with Nonlinear Dispersion and Nonlinear Dissipation
We prove the well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation ut+f(u)x−δg(uxx)x−εh(ux)x=0. Contrary the linear case, the dispersion properties of the free evolution are useless and a vanishing parabolic regularization is then us...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2016
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10174/17722 |
País: | Portugal |
Oai: | oai:dspace.uevora.pt:10174/17722 |
Resumo: | We prove the well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation ut+f(u)x−δg(uxx)x−εh(ux)x=0. Contrary the linear case, the dispersion properties of the free evolution are useless and a vanishing parabolic regularization is then used. |
---|