Hardy–Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type
We show that the Hardy–Littlewood maximal operator is bounded on a reflexive variable Lebesgue space Lp(·) over a space of homogeneous type (X, d, µ) if and only if it is bounded on its dual space Lp0(·), where 1/p(x) + 1/p0(x) = 1 for x ∈ X. This result extends the corresponding result of Lars Dien...
Autor principal: | |
---|---|
Formato: | article |
Idioma: | eng |
Publicado em: |
2021
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10362/117157 |
País: | Portugal |
Oai: | oai:run.unl.pt:10362/117157 |