Deriving and improving CMA-ES with information geometric trust regions
CMA-ES is one of the most popular stochastic search algorithms. It performs favourably in many tasks without the need of extensive parameter tuning. The algorithm has many beneficial properties, including automatic step-size adaptation, efficient covariance updates that incorporates the current samp...
Autor principal: | |
---|---|
Outros Autores: | , , , |
Formato: | conferencePaper |
Idioma: | eng |
Publicado em: |
2017
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/1822/51451 |
País: | Portugal |
Oai: | oai:repositorium.sdum.uminho.pt:1822/51451 |