Calculus of variations on time scales and discrete fractional calculus

Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Dese...

ver descrição completa

Detalhes bibliográficos
Autor principal: Ferreira, Rui Alexandre Cardoso (author)
Formato: doctoralThesis
Idioma:eng
Publicado em: 2011
Assuntos:
Texto completo:http://hdl.handle.net/10773/2921
País:Portugal
Oai:oai:ria.ua.pt:10773/2921
Descrição
Resumo:Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.