Two generalizations of homogeneity in groups with applications to regular semigroups

Let X be a finite set such that |X| = n and let i 6 j 6 n. A group G 6 Sn is said to be (i, j)-homogeneous if for every I, J ⊆ X, such that |I| = i and |J| = j, there exists g ∈ G such that Ig ⊆ J. (Clearly (i, i)-homogeneity is i-homogeneity in the usual sense.) A group G 6 Sn is said to have the k...

ver descrição completa

Detalhes bibliográficos
Autor principal: Araújo, João (author)
Outros Autores: Cameron, Peter J. (author)
Formato: article
Idioma:eng
Publicado em: 2015
Assuntos:
Texto completo:http://hdl.handle.net/10400.2/3811
País:Portugal
Oai:oai:repositorioaberto.uab.pt:10400.2/3811