Improving Failure Prediction by Ensembling the Decisions of Machine Learning Models: A Case Study

The complexity of software has grown considerably in recent years, making it nearly impossible to detect all faults before pushing to production. Such faults can ultimately lead to failures at runtime. Recent works have shown that using Machine Learning (ML) algorithms it is possible to create model...

ver descrição completa

Detalhes bibliográficos
Autor principal: Campos, João (author)
Outros Autores: Costa, Ernesto (author), Vieira, Marco (author)
Formato: article
Idioma:eng
Publicado em: 2019
Assuntos:
Texto completo:http://hdl.handle.net/10316/101614
País:Portugal
Oai:oai:estudogeral.sib.uc.pt:10316/101614