Approximate controllability of fractional nonlocal delay semilinear systems in Hilbert spaces
We study the existence and approximate controllability of a class of fractional nonlocal delay semilinear differential systems in a Hilbert space. The results are obtained by using semigroup theory, fractional calculus and Schauders fixed point theorem. Multi-delay controls and a fractional nonlocal...
Main Author: | |
---|---|
Other Authors: | |
Format: | article |
Language: | eng |
Published: |
1000
|
Subjects: | |
Online Access: | http://hdl.handle.net/10773/11897 |
Country: | Portugal |
Oai: | oai:ria.ua.pt:10773/11897 |
Summary: | We study the existence and approximate controllability of a class of fractional nonlocal delay semilinear differential systems in a Hilbert space. The results are obtained by using semigroup theory, fractional calculus and Schauders fixed point theorem. Multi-delay controls and a fractional nonlocal condition are introduced. Furthermore, we present an appropriate set of sufficient conditions for the considered fractional nonlocal multi-delay control system to be approximately controllable. An example to illustrate the abstract results is given. © 2013 Taylor & Francis. |
---|