Modeling volatility: an assessment of the value at risk approach

Value at Risk (VaR) tornou-se uma das mais populares técnicas de medição e controlo de risco, nomeadamente risco de mercado. Esta medida diz-nos qual a perda máxima esperada de um activo ou portfólio para um determinado período de tempo dado um certo intervalo de confiança. Nesta tese, pretende-se v...

Full description

Bibliographic Details
Main Author: Vieira, Joana Bruno (author)
Format: masterThesis
Language:eng
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10071/5168
Country:Portugal
Oai:oai:repositorio.iscte-iul.pt:10071/5168
Description
Summary:Value at Risk (VaR) tornou-se uma das mais populares técnicas de medição e controlo de risco, nomeadamente risco de mercado. Esta medida diz-nos qual a perda máxima esperada de um activo ou portfólio para um determinado período de tempo dado um certo intervalo de confiança. Nesta tese, pretende-se verificar a adequação de alguns modelos de heteroscedasticidade condicional para estimar e modelizar a volatilidade dos retornos. Para isso, consideraram-se os seguintes modelos: EWMA, GARCH, A-PARCH, E-GARCH e GJR-GARCH e diferentes índices e taxas de câmbio representativos de áreas geográficas distintas, também como dois activos com características particulares: o ouro e o petróleo. A performance dos modelos na estimação do VaR foi analisada com recurso às técnicas de backtesting nomeadamente ao teste de Kupiec (1995) e Christoffersen (1998). Com este estudo é revelado que o método GARCH e GJR-GARCH conseguem prever o VaR de uma forma mais precisa do que os restantes modelos considerados para os dois níveis de confiança analisados (95% e 99%).