Certain identities, connection and explicit formulas for the Bernoulli and Euler numbers and the Riemann zeta-values
Various new identities, recurrence relations, integral representations, connection and explicit formulas are established for the Bernoulli and Euler numbers and the values of Riemann's zeta function (s). To do this, we explore properties of some Sheffer's sequences of polynomials related t...
Autor principal: | |
---|---|
Formato: | article |
Idioma: | eng |
Publicado em: |
2015
|
Texto completo: | https://hdl.handle.net/10216/90454 |
País: | Portugal |
Oai: | oai:repositorio-aberto.up.pt:10216/90454 |