An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds

For a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m ≥ 4, we provide an algorithm for estimating the values of the topological invariant Dm r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are ba...

ver descrição completa

Detalhes bibliográficos
Autor principal: Graff, Grzegorz (author)
Outros Autores: Pilarczyk, Pawel (author)
Formato: article
Idioma:eng
Publicado em: 2015
Assuntos:
Texto completo:http://hdl.handle.net/1822/39774
País:Portugal
Oai:oai:repositorium.sdum.uminho.pt:1822/39774
Descrição
Resumo:For a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m ≥ 4, we provide an algorithm for estimating the values of the topological invariant Dm r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing Dm r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013), 63–84]. An open-source implementation of the algorithm programmed in C++ is publicly available at http://www.pawelpilarczyk.com/combtop/.