Intersection local times of independent fractional Brownian motions as generalized white noise functionals
In this work we present expansions of intersection local times of fractional Brownian motions in R^d , for any dimension d ≥ 1, with arbitrary Hurst coefficients in (0, 1)^d . The expansions are in terms of Wick powers of white noises (corresponding to multiple Wiener integrals), being well-defined...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2012
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10400.2/2033 |
País: | Portugal |
Oai: | oai:repositorioaberto.uab.pt:10400.2/2033 |
Resumo: | In this work we present expansions of intersection local times of fractional Brownian motions in R^d , for any dimension d ≥ 1, with arbitrary Hurst coefficients in (0, 1)^d . The expansions are in terms of Wick powers of white noises (corresponding to multiple Wiener integrals), being well-defined in the sense of generalized white noise functionals. As an application of our approach, a sufficient condition on d for the existence of intersection local times in L^2 is derived, extending the results in Nualart and Ortiz-Latorre (J. Theoret. Probab. 20(4):759–767, 2007) to different and more general Hurst coefficients. |
---|