Greenhouse air temperature modelling with radial basis function neural networks
Results on the application of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, are presented. As the model is intended to be incorporated in an pred...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | conferenceObject |
Idioma: | eng |
Publicado em: |
2013
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10400.1/2303 |
País: | Portugal |
Oai: | oai:sapientia.ualg.pt:10400.1/2303 |