An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting

This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. W...

ver descrição completa

Detalhes bibliográficos
Autor principal: Jalali, S. M. (author)
Outros Autores: Khodayar, M. (author), Khosravi, A. (author), Osório, Gerardo J. (author), Nahavandi, S. (author), Catalão, João P. S. (author)
Formato: conferenceObject
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/11328/3920
País:Portugal
Oai:oai:repositorio.uportu.pt:11328/3920