An advanced generative deep learning framework for probabilistic spatio-temporal wind power forecasting

This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. W...

Full description

Bibliographic Details
Main Author: Jalali, S. M. (author)
Other Authors: Khodayar, M. (author), Khosravi, A. (author), Osório, Gerardo J. (author), Nahavandi, S. (author), Catalão, João P. S. (author)
Format: conferenceObject
Language:eng
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11328/3920
Country:Portugal
Oai:oai:repositorio.uportu.pt:11328/3920