Resumo: | The effect of bioaugmentation with an anaerobic lipolytic bacterial strain on the anaerobic digestion of restaurant lipid-rich waste was studied in batch experiments with a model waste containing 10% lipids (triolein) under two sets of experimental conditions: (A) methanogenic conditions, and (B) initially acidogenic conditions in the presence of only the lipolytic strain biomass (4 days), followed by methanogenic conditions. The bioaugmenting lipolytic strain, Clostridium lundense (DSM 17049T), was isolated from bovine rumen. The highest lipolytic activity was detected at the beginning of the experiments. A higher methane production rate, 27.7 cm3 CH4(STP) g-1 VSadded day-1 (VS, volatile solids) was observed in experiment A with the presence of the bioaugmenting lipolytic strain under methanogenic conditions. The highest initial oleate concentration, 99% of the total oleate contained in the substrate, was observed in the experiments with the bioaugmenting lipolytic strain under treatment A conditions; the levels of palmitate and stearate were also higher until day 15, indicating that the bioaugmentation strategy improved the hydrolysis of the lipid fraction. In general, the results indicated that degradation of the long chain fatty acids (LCFAs) controlled the digestion process.
|