On the Maximum of a Bivariate INMA Model with Integer Innovations

We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson's class (Anderson, 1970). The innovations have an impact on the ra...

ver descrição completa

Detalhes bibliográficos
Autor principal: Hüsler, J. (author)
Outros Autores: Temido, M. G. (author), Valente-Freitas, A. (author)
Formato: article
Idioma:eng
Publicado em: 2022
Assuntos:
Texto completo:http://hdl.handle.net/10773/35501
País:Portugal
Oai:oai:ria.ua.pt:10773/35501
Descrição
Resumo:We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving average model, based on discrete random variables. We assume that the bivariate distribution of the iid innovations belong to the Anderson's class (Anderson, 1970). The innovations have an impact on the random variables of the INMA model by binomial thinning. We show that the limiting distribution of the bivariate maximum is also of Anderson's class, and that the components of the bivariate maximum are asymptotically independent.