A symbolic approach to nonlinearly perturbed heat equation
We consider a system described by the linear heat equation with adiabatic boundary conditions which is perturbed periodicaly. This perturbation is nonlinear and is characterized by a one-parameter family of quadratic maps. The system, depending on the parameters, presents very complex behaviour. We...
Autor principal: | |
---|---|
Outros Autores: | , |
Formato: | article |
Idioma: | eng |
Publicado em: |
2017
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10174/19624 |
País: | Portugal |
Oai: | oai:dspace.uevora.pt:10174/19624 |
Resumo: | We consider a system described by the linear heat equation with adiabatic boundary conditions which is perturbed periodicaly. This perturbation is nonlinear and is characterized by a one-parameter family of quadratic maps. The system, depending on the parameters, presents very complex behaviour. We introduce a symbolic framework to analyze the system and resume its most important features. |
---|