Summary: | The classification of abstract sentences is a valuable tool to support scientific database querying, to summarize relevant literature works and to assist in the writing of new abstracts. This study proposes a novel deep learning approach based on a convolutional layer and a bi-directional gated recurrent unit to classify sentences of abstracts. The proposed neural network was tested on a sample of 20 thousand abstracts from the biomedical domain. Competitive results were achieved, with weight-averaged precision, recall and F1-score values around 91%, which are higher when compared to a state-of-the-art neural network.
|