Combinatorial Perron values of trees and bottleneck matrices
The algebraic connectivity $a(G)$ of a graph $G$ is an important parameter, defined as the second smallest eigenvalue of the Laplacian matrix of $G$. If $T$ is a tree, $a(T)$ is closely related to the Perron values (spectral radius) of so-called bottleneck matrices of subtrees of $T$. In this settin...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
1000
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/10773/16673 |
País: | Portugal |
Oai: | oai:ria.ua.pt:10773/16673 |