Short-term electric load forecasting using computational intelligence methods
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce several methods for short-term electric load forecasting. All the presented methods stem from computational intelligence techniques: Random Forest, Nonlinear Autoregr...
Autor principal: | |
---|---|
Outros Autores: | , , , |
Formato: | conferencePaper |
Idioma: | eng |
Publicado em: |
2013
|
Assuntos: | |
Texto completo: | http://hdl.handle.net/1822/31409 |
País: | Portugal |
Oai: | oai:repositorium.sdum.uminho.pt:1822/31409 |