Improving solar forecasting using Deep Learning and Portfolio Theory integration
Solar energy has been consolidated as one of the main renewable energy sources capable of contributing to supply global energy demand. However, the solar resource has intermittent feature in electricity production, making it difficult to manage the electrical system. Hence, we propose the applicatio...
Autor principal: | |
---|---|
Outros Autores: | , , |
Formato: | article |
Idioma: | por |
Publicado em: |
2022
|
Assuntos: | |
Texto completo: | https://doi.org/LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; FERNÁNDEZ RAMÍREZ, Luis Miguel; BRAGA, Arthur Plínio de Souza. Improving solar forecasting using Deep Learning and Portfolio Theory integration. Energy, v. 195, p. 117016, 2020. https://doi.org/10.1016/j.energy.2020.117016 https://doi.org/10.1016/j.energy.2020.117016 |
País: | Brasil |
Oai: | oai:www.repositorio.ufc.br:riufc/64548 |
Texto Completo
https://doi.org/LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; FERNÁNDEZ RAMÍREZ, Luis Miguel; BRAGA, Arthur Plínio de Souza. Improving solar forecasting using Deep Learning and Portfolio Theory integration. Energy, v. 195, p. 117016, 2020. https://doi.org/10.1016/j.energy.2020.117016https://doi.org/10.1016/j.energy.2020.117016