A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering
Minimum sum-of-squares clustering (MSSC) consists in partitioning a given set of n points into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. Recently, Peng & Xia (2005) established the equivalence between 0-1 semidefinite progr...
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | article |
Idioma: | eng |
Publicado em: |
2009
|
Assuntos: | |
Texto completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382009000300002 |
País: | Brasil |
Oai: | oai:scielo:S0101-74382009000300002 |