Summary: | Os objetivos deste trabalho são o aprofundamento do conhecimento científico da história da Trigonometria e a criação de tarefas para alunos tendo em vista a motivação para este tópico e o desenvolvimento de competências a nível da pesquisa, investigação e demonstração, servindo-nos, para isso, de vários episódios da sua história. Começamos pelo Egipto (seked da pirâmide), seguindo-se a Grécia de Hiparco e Ptolomeu, onde vemos nascer, com teoremas e demonstrações, as primeiras tabelas de cordas. Faremos uma incursão pela Índia, onde encontramos vários matemáticos/astrónomos que, movidos pelo conhecimento dos céus, criam uma linguagem trigonométrica própria e um conjunto de técnicas engenhosas e sofisticadas que lhes permitem a obtenção de tabelas de semicordas, mais rigorosas que as gregas. Contudo, ao contrário dos gregos, os indianos não acompanham as suas técnicas de provas rigorosas. No Império Árabe (Islão) constata-se a fusão do conhecimento grego com o indiano. Trabalham as seis funções trigonométricas (seno, cosseno, tangente, secante, cossecante, cotangente) no círculo unitário. Aqui, uma das forças motrizes da Trigonometria foi a religião, com a necessidade da determinação da quibla, a direção sagrada para Meca. No que concerne a Portugal veremos de que forma Pedro Nunes aborda a Trigonometria na sua Annotação sobre a largura dos Climas. Os últimos episódios da História da Trigonometria, que apresentamos nesta dissertação, envolvem a relação dos triângulos esféricos de ângulo reto com os triângulos retângulos planos e a evolução da linguagem e da simbologia associada à Trigonometria. No último capítulo são propostas quatro tarefas, para desenvolvimento em sala de aula, com recurso às diferentes vistas proporcionadas pelo software de geometria dinâmica GeoGebra 5.0 (3D) e à folha de cálculo do Excel. Os assuntos trigonométricos aqui abordados são variados e apela-se ao raciocínio indutivo (através de conjeturas) e ao raciocínio dedutivo (através de demonstrações).
|