Combining simulated and real images in deep learning

To train a deep learning (DL) model, considerable amounts of data are required to generalize to unseen cases successfully. Furthermore, such data is often manually labeled, making its annotation process costly and time-consuming. We propose the use of simulated data, obtained from simulators, as a w...

ver descrição completa

Detalhes bibliográficos
Autor principal: Pedro Xavier Tavares Monteiro Correia de Pinho (author)
Formato: masterThesis
Idioma:eng
Publicado em: 2021
Assuntos:
Texto completo:https://hdl.handle.net/10216/135459
País:Portugal
Oai:oai:repositorio-aberto.up.pt:10216/135459