Strong minimizers of the calculus of variations on time scales and the Weierstrass condition

We introduce the notion of strong local minimizer for the problems of the calculus of variations on time scales. Simple examples show that on a time scale a weak minimum is not necessarily a strong minimum. A time scale form of the Weierstrass necessary optimality condition is proved, which enables...

ver descrição completa

Detalhes bibliográficos
Autor principal: Malinowska, A.B. (author)
Outros Autores: Torres, D.F.M. (author)
Formato: article
Idioma:eng
Publicado em: 2011
Assuntos:
Texto completo:http://hdl.handle.net/10773/4083
País:Portugal
Oai:oai:ria.ua.pt:10773/4083
Descrição
Resumo:We introduce the notion of strong local minimizer for the problems of the calculus of variations on time scales. Simple examples show that on a time scale a weak minimum is not necessarily a strong minimum. A time scale form of the Weierstrass necessary optimality condition is proved, which enables to include and generalize in the same result both continuous-time and discrete-time conditions.