Linear and nonlinear fractional voigt models

We consider fractional generalizations of the ordinary differential equation that governs the creep phenomenon. Precisely, two Caputo fractional Voigt models are considered: a rheological linear model and a nonlinear one. In the linear case, an explicit Volterra representation of the solution is fou...

ver descrição completa

Detalhes bibliográficos
Autor principal: Chidouh, Amar (author)
Outros Autores: Guezane-Lakoud, Assia (author), Bebbouchi, Rachid (author), Bouaricha, Amor (author), Torres, Delfim F.M. (author)
Formato: article
Idioma:eng
Publicado em: 1000
Assuntos:
Texto completo:http://hdl.handle.net/10773/16625
País:Portugal
Oai:oai:ria.ua.pt:10773/16625
Descrição
Resumo:We consider fractional generalizations of the ordinary differential equation that governs the creep phenomenon. Precisely, two Caputo fractional Voigt models are considered: a rheological linear model and a nonlinear one. In the linear case, an explicit Volterra representation of the solution is found, involving the generalized Mittag-Leffler function in the kernel. For the nonlinear fractional Voigt model, an existence result is obtained through a fixed point theorem. A nonlinear example, illustrating the obtained existence result, is given. © Springer International Publishing AG 2017.