Developments of a new artificial intelligence approach for anomaly detection

Este trabalho visou o desenvolvimento do modelo de frustração celular para aplicações à segurança informática. Neste âmbito foram desenvolvidos os processos necessários para materializar o modelo de frustração celular num algoritmo semi-supervisionado de deteção de anomalias. É por seguida efetuada...

Full description

Bibliographic Details
Main Author: Faria, Bruno Filipe dos Santos (author)
Format: doctoralThesis
Language:eng
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10773/21126
Country:Portugal
Oai:oai:ria.ua.pt:10773/21126
Description
Summary:Este trabalho visou o desenvolvimento do modelo de frustração celular para aplicações à segurança informática. Neste âmbito foram desenvolvidos os processos necessários para materializar o modelo de frustração celular num algoritmo semi-supervisionado de deteção de anomalias. É por seguida efetuada uma comparação da capacidade de discriminação do algoritmo de frustração celular com algoritmos do estado de arte, nomeadamente máquinas de vetores de suporte e florestas aleatórias (com sigla em inglês de SVM e RF, respetivamente). Verifica-se que nos casos estudados o algoritmo de frustração celular obtém uma capacidade de discriminação de anomalias semelhante, senão melhor, que os algoritmos anteriormente descritos. São ainda descritas otimizações para reduzir o elevado custo computacional do algoritmo recorrendo a novos paradigmas de computação, i.e. pelo uso de placas gráficas, assim como otimizações que visam reduzir a complexidade do algoritmo. Em ambos os casos foi verificada uma redução do tempo computacional. Por fim, é ainda verificado que as melhorias introduzidas permitiram que a capacidade de discriminação do algoritmo se tornasse menos sensível à perturbação dos seus parâmetros.